

Hip Implant Corrosion Mechanisms and Effects:

Mechanically Assisted Corrosion, Crevices and Voltage Effects

Jeremy L. Gilbert, Ph.D., FBSE
Professor of Biomaterials
Syracuse Biomaterials Institute
Department of Biomedical and Chemical Engineering
Syracuse University
Syracuse, NY 13244

Potential Conflicts

- Consultant to and/or research contracts with
 - Medtronic
 - Stryker Orthopedics
 - Depuy Orthopedics
 - Biomet, Inc.
- Other Potential Conflicts
 - Editor-in-Chief, Journal of Biomedical Materials
 Research Part B: Applied Biomaterials
 - Past President, Society for Biomaterials

Mechanically Assisted Corrosion

- Tribocorrosion (wear and corrosion)
- Fretting Corrosion (fretting and corrosion often in presence of a crevice)
 - Fretting = small scale cyclic motion (< 100 um) between two opposing surfaces
- Stress Corrosion Cracking
- Stress Enhanced Corrosion
- Each is present in hip replacements where metals are stressed, abraded, worn
 or fretted
- Crevice-like environments add to the severity and complexity of the corrosion
- Fretting INITIATED Crevice Corrosion Fretting can produce the conditions for run-away corrosion (where fretting (or wear) is no longer required)
 - Fretting = Match
 - Crevice Corrosion = Fire

Some Basic Facts of Importance

- You CANNOT HAVE WEAR of Metal Alloy Hip Implants WITHOUT CORROSION!
 - (But, you can have corrosion without wear)
- WEAR and CORROSION ARE COUPLED and NON-LINEAR
 - Wear -> Oxide Film Abrasion -> Corrosion -> Voltage Drop ->
 - -> Altered Oxide -> Altered Wear
- Oxide Films on Alloy Surfaces are Critical to Mechanically Assisted Corrosion Behavior and Corrosion Resistance
- With Corrosion: Voltage drops (cathodic excursions) and currents are generated which can affect the implant
 - depends on area abraded,
 - crevice geometries
 - and area available for reduction reactions
- Cathodic excursions have significant effects on the local biological reaction. It's not just about the metal ions and debris!

Hip Prosthesis Corrosion Sources

Examples of Current Modular Designs

Not indicative of anything corrosion related

Most severe corrosion observed at modular tapers Corrosion at one location affects all others (e.g., voltage drops)

In-Vivo Corrosion of Modular Tapers: Head-Neck Tapers: 1993

Gilbert, et al., JBJS 1993

We have known since the late 1980's about modular implant corrosion (Svensson et al, 1988, JBJS(A), Fulminant pseudotumor with Co-Cr/CoCr modular taper)

All currently-used alloy combinations are known to be susceptible to attack (Ti, CoCrMo, 316L SS)

Passive oxide films on the surface are central to mechanism of attack.

Ti-6Al-4V/Co-Cr-Mo

Modular Body Interfaces: Ti6Al4V/Ti6Al4V Interfaces: 2009

Company A

Infection-related

22 months

Company B► Infection-related► Unknown -1?

Company C

→ Pain

→ 27 months

Ti/Ti Modular Tapers:

Fretting Crevice Corrosion is STILL a problem

Pitting Corrosion and Hydrogen Embrittlement have been observed,

Fretting INITIATED Crevice Corrosion

Modular Neck Corrosion: 2012

In-Vivo Oxide-Induced Stress Corrosion Cracking in Ti-6Al-4V Modular Neck-stem Tapers

Medial proximal neck-stem taper cracking

In-Vitro Fretting Corrosion Testing 316L SS Stem/CoCrMo Head Couples

Electrochemistry of Fretting Interfaces

Metal ions, phosphate, chloride, hydrogen ions accumulate in crevice

Fretting currents consist of dissolution and repassivation reactions

Oxidation debris accumulates in crevice

2. $M + H_2O \rightarrow MO + 2H^+ + 2e^-$ Excess electrons decrease voltage of implant

Crevices and Spatially Separated Half-Cell Reactions

- Crevice and fretting localize oxidation
 - Oxide film repassivation
 - Metal ion dissolution
- Outside Crevice
 - Reduction (multiple, biologically based species available)
- Note: in crevice
 - Oxygen depletion
 - pH drops
 - Cl⁻, PO₄³⁻ increases to balance M⁺
- Note: Fretting disrupts oxide in crevice and accelerates oxidation by 6 orders of magnitude.
- Build up of electrons drops voltage of surface

Oxide Abrasion: High Speed Scratch Testing Ti- and CoCr Alloy

- 2.5 μA for 700 μm² results in 0.35
 A/cm² current density at scratch site
- 10⁶ higher current densities than at passive oxides.

$$M \rightarrow M^{n+} + ne^{-}$$

 $mM + nH_2O \rightarrow M_mO_n + 2nH^+ + 2ne^{-}$

$$i_{total} = i_{film} + i_{dissolution} = \frac{\rho n F \upsilon}{M_{w}} \frac{d\theta}{dt} + i_{o} A e^{\frac{\eta}{\beta}} (1 - \theta)$$

Current response is voltage and alloy dependent Buckley

Buckley and Gilbert, 1994 Goldberg and Gilbert, 1997, 2004 Gilbert and Jacobs, ASTM, 1997

Asperity-Based Model of Fretting Corrosion Currents

$$I_{film} = 2 \frac{\rho nF}{M_w} \frac{A_{nom}}{\Delta} m(E - E^{onset}) \frac{d\delta}{dt}$$

Fretting currents resulting from oxide abrasion and repassivation

Note: Fretting 1 mm² will result in over 10 μA of current

Swaminathan and Gilbert, 2012, Biomaterials

Fretting Initiated Crevice Corrosion

Reduction Reactions and Cell Viability (MC3T3-E1)

1 uA/cm² of reduction reaction kills cells

CoCrMo 24 hr at voltage, Haeri et al., 2012, Biomaterials

200

Reduction reactions at metal surfaces Kill osteoblast-like cells

Previously unknown mechanism of biological interaction

May play a role in hip prostheses in-vivo

It's not just about the metal ions

Animations of Cell Behavior Under Voltage Control

Vinculin Fluorescence Thresholded and Fourier Transform Filtered. (real time in upper left of each image)

Corrosion – Ion Level Estimate:

Can one estimate ion levels from corrosion currents?

Assume Steady State: Rate of generation of ions=rate of excretion via Urine

$$I = \sum_{i} \frac{n_{i} F}{Mw_{i}} \frac{dm_{i}}{dt}$$

$$I = \frac{dm}{dt} F \sum_{i} \frac{n_{i} \widehat{m}_{i}}{Mw_{i}}$$

$$\dot{m} = kI$$

$$k = \frac{1}{F \sum_{i} \frac{n_{i} \hat{m} i}{Mw_{i}}} = 2.18 \frac{\mu gs}{\mu C day}$$

$$\rho_m = \frac{kI}{V_u}$$

 ρ_m is metal ion levels in urine, I is the corrosion current, V_u is the volume of urine excreted per day (2 L)

$$Co \rightarrow Co^{2+} + 2e^{-}$$

 $Cr \rightarrow Cr^{3+} + 3e^{-}$

This estimate (and its only an estimate) gives a sense of the relationship between amount of corrosion required to result in a systemic ion level

Conclusions

- Mechanically assisted corrosion (MAC) continues to be a serious concern for metallic biomaterials in all applications
- Wear and Corrosion are coupled and interactive
- Fretting can INITIATE crevice corrosion
- All current alloy systems are susceptible to MAC
- Negative voltage excursions result from MAC and may lead to adverse biological responses (apoptosis in-vitro)

Acknowledgements

Supported in part by:

- Medtronic, Stryker, Depuy
- To date, no research grants were provided to the author by the federal government for any of the work presented.

Collaborators

- Joshua J. Jacob, M.D., Robert Urban, Rush Medical University
- Eugene P. Lautenschlager, Ph.D., Northwestern University
- George Langford, Ph.D., Syracuse University
- Torsten Wollert, Ph.D., Syracuse University

Students:

- Christine Buckley, Ph.D.
- Jay Goldberg, Ph.D.
- Spiro Megremis, Ph.D.
- Mark Ehrensberger, Ph.D.
- Shiril Sivan, Ph.D. (expected 2013)
- Morteza Haeri, Ph.D. (expected 2012)
- Viswanathan Swaminathan, Ph.D. (expected 2012)